FUTURE FAR-IR AND SUBMM TELESCOPES: POTENTIAL FOR NEW DISCOVERIES

Andrew Blain Institute of Astronomy, Cambridge, UK

- ullet These wavebands currently suffer from: Lack of spatial resolution $-\lambda/D$ Lack of sensitivity / field of view -h
 u vs kT
- Interferometry possible, but arrays quite small
- Can probe ISM astrophysics in great detail, but most opportunities for discoveries at highest z
- Future telescopes will address:
 Energy generation history to z ≈ 3 (SIRTF)
 Details of galaxy astrophysics there (ALMA)
 First pollution of Universe at z ≥ 15 (ALMA)
 Fair selection of high-z galaxies z (ALMA)
 Redshifted stellar/SN light from z ≥ 20 (SPECS?)
 SZ/OV effect from (pre-)reionization? (ALMA)

RESOLUTION & SENSITIVITY

- ISO and SCUBA enabled moderate/high-z far-IR sub-mm astronomy possible
- Both limited by resolving power confusion
- OVRO/IRAM/BIMA/Nobeyama arrays can only detect brightest SCUBA galaxies, in 10s of hours
- SIRTF too is quick to reach confusion in far-IR
- Ideally, must obtain sub-arcsec resolution, to avoid confusion limit. Requires aperture/baseline $D>250[\lambda/mm]\ m$
- A variety of requirements for the next step:
 - Ability to resolve high-z galaxies quickly:
 ALMA, far-IR interferometers
 - Wide-area, deep surveys to select targets:
 10-50-m (sub)mm telescopes with large arrays,
 SIRTF, Herschel, smaller future missions
 - Rapid wide-band CO redshift searches: ALMA and dedicated mm instruments (Glenn, Bock)

BACKGROUND RADIATION

Compare optical/UV and far-IR/sub-mm bands Star/AGN light reprocessed by dust

Dramatic progress in last 3 years:

- COBE-FIRAS/DIRBE in sub-mm & far-IR
- Agreement on optical/near-IR spectral shape
- SCUBA & ISO lower limits
- Uncertain 5-200 μ m region (SIRTF/SOFIA)

SUITABLE (SUB)MM TELESCOPES

For 1- σ , 1 deg², 1 hour, 850 μ m:

- \bullet SCUBA: 50-100 mJy beam⁻¹, 13 arcsec
- ALMA: $1-10 \,\mathrm{mJy\,beam^{-1}}$, $0.01-3 \,\mathrm{arcsec}$
- FIRST*: $50-100 \,\mathrm{mJy\,beam^{-1}}$, $25 \,\mathrm{arcsec}$
- BLAST**: $30 \,\mathrm{mJy\,beam^{-1}}$, $\simeq 30 \,\mathrm{arcsec}$
- Planck[†]: 7 mJy beam⁻¹, 4 arcmin
- \bullet SOFIA: >100 mJy beam $^{-1}$, 40 arcsec
- \bullet LMT/GTM: M 1.5 mJy beam $^{-1}$, 6 arcsec

 * 450 μ m; ** 350 μ m † All-sky survey M 1.1 mm

SUITABLE FAR-IR TELESCOPES

For 1- σ , 1 deg², 1 hour:

- SIRTF(160 μ m): 11 mJy beam⁻¹, \simeq 40 arcsec
- SIRTF(70 μ m): 0.9 mJy beam⁻¹, \simeq 18 arcsec
- SIRTF(24 μ m): 0.4 mJy beam⁻¹, \simeq 7 arcsec
- ullet SOFIA(110 μ m): 240 mJy beam $^{-1}$, \simeq 10 arcsec
- SPECS (250 μ m): 30 μ Jy beam⁻¹, 0.05 arcsec

FUTURE DETECTION RATES

- Shows range of forthcoming instruments
- ALMA crucial for any extremely deep survey and for direct follow-up
- Note also the huge Planck sample

DISCOVERIES USING SIRTF/ALMA/Herschel...

- ullet SIRTF will make statistical surveys at z $\simeq 1-2$
- ALMA detects known sub-mm sources in seconds
- With no confusion ($< \mu$ Jy level), ALMA reaches two orders of magnitude deeper than SCUBA
- Can find sub-L* galaxies at moderate z, or the most distant objects
- SIRTF/Herschel/future (sub)mm bolometer arrays scan the sky faster, and can feed ALMA targets
- SOFIA/Herschel spectrographs probe mid-/far-IR wavelengths too short for ALMA
- Will ALMA run out of dusty sources at some z?
 Or will CMB control high-z dust temperature?
 - Yes: need a way to probe more distant objects
 - No: need to study ALMA sources at SED peak
- Need to return to mid-IR for redshifted starlight?
 SPECS SEDs of high-z galaxies & (pre-)reionization

VERY DEEP SURVEYS AT 350 GHz

- Data from all published SCUBA surveys
- Continuum models again, plus lensed galaxies
- The quiescent galaxies could steepen faint counts
- ullet In 160 hrs ALMA can reach 20 μ Jy (5 σ) in a $2{ imes}10^{-5}\,{\rm deg}^2$ area

MORE EXOTIC TARGETS

- Maybe discovery potential lurks in the exotic?
- 0.67- μ m Li recombination at z \sim 500 (Loeb)
- LiH emission $[J(1\rightarrow 0)]$ at 444 GHz from high-redshift [J(M)] from high-redshift [J(M)]
- Important issues clearer after ALMA/NGST:
 - Know something about z ~ 10
 - Does UV or far-IR emission dominate at $z \gtrsim 4$?
 - Know about very faint 'foreground' galaxies
- SZ effect is redshift-proof. Search with ALMA, or dedicated GHz array (Carlstrom)
- Very high-z H/D/Li lines appear in radio SKA
- GRBs could be detectable from the highest z.
 Afterglows peak in far-IR, but redshift (sub)mm
- CMB surprises might turn up in (sub)mm

SUMMARY

- Sub-arcsec resolution required both to avoid confusion, and study internal structure of sources
- Galaxies at z ≤ 3 will be studied using SIRTF;
 SOFIA/Herschel/ALMA follow-up
- ALMA should find earliest metal-enriched objects
- ALMA may determine epoch of first enrichment or epoch of first light – test with NGST
- CMB reduces ALMA's efficiency at $z \gtrsim 10$
- If first light beyond z = 20, SPECS may image it directly & study all lower-z objects in great detail
- Arcmin-scale structures on the CMB could reveal details of re-ionization via mm-wave SZ effect
- Exotic high-z molecular line observations?